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The End Point Control for a MMAM Controlled
Flexible Manipulator
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For a high bandwidth, accurate end of arm motion control with good disturbance rejection,
the Momentum Management Approach to Motion control(MMAM) is proposed. The MMAM
is a kind of position control technique that uses inertial forces, applied at or near the end of arm
to achieve high bandwidth and accuracy in movement and in the face of force disturbances. To
prove the concept of MMAM, the end point control of a flexible manipulator is considered. For
this purpose, a flexible beam is mounted on the x-y table, and the MMAM actuator is attached
on the top of the flexible beam. A mathematical model is developed for the flexible beam being
controlled by the MMAM actuator and slide base DC motor. A system identification method
is applied to estimate some system parameters in the model which can not be determined because
of the complexity of the mechanism. In order to optimize the result of the position (lvelocity)
estimation of a beam end point of which movement is monitored by an accelerometer and
machine vision, a Kalman filter technique is applied. For the end point control of the flexible
beam, the optimal linear output feedback control is applied.

Key Words: MMAM(Momentum Management Approach to Motion Control), Flexible
Manipulator, Proof Mass, System Identification, Accelerometer, Vision System,
Kalman Filter, Optimal Linear Output Feedback

1. Introduction

Lightweight manipulators suffer because they
are unable to attain high bandwidth position
control, or to maintain position in the face of
high bandwidth disturbing forces. This is inherent
in any manipulator where the driving actuator is
separated from the end of arm by a structure
which dt~flects significantly during the motion.

Alternate approaches to resolving these prob­
lems are, (1) augmenting the arm with additional
fine motion device (micro-manipulator) on the
end-effector to achieve high positional accuracy
and variable compliance without moving the
entire structure (Sharon and Hardt, 1984; Hollis,
1987), (2) active control of the flexible modes of
the structure to reduce the effects of deflections
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by using a control algorithm that specifically
accounts for the deflections (Cannon and Sch­
mitz, 1984; Kanoh and Lee, 1985; Hasting and
Book, 1985), (3) bracing against some object near
the end-effector to enhance accuracy and to bear
the interaction force between the end-effector and
the environment (Book and Sangveraphunsiri,
1984), (4) more efficient structures which achieve
better performance per unit weight by using (a)
stiffer materials, (b) more efficient geometries, e.g.
closed chains, or (c) passive damping (Albert,
1986), (5) momentum management approach to
motion control(MMAM) which uses momentum
exchange between the manipulator end of arm
and one or more proof-mass(es) near the tip of a
manipulator (Dickerson and Nam, 1988; Nam,
1991).

The approach using micro-manipulators is ex­
cellent where rapid positioning of very light
payloads is required. If the payload is heavy, the
forces required to move the payload rapidly are
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such that a motion of the micro-manipulator

results more in bending and vibration of the arm
than motion of the payload. Similarly, if there are

high bandwidth disturbing forces, these are trans­

mitted to the arm. A way of countering that, a
bracing strategy, has been suggested which may

be quite practical when there is a convenient
place to brace.

A momentum management approach to the

motion control(MMAM) has been suggested for

overcoming this shortcoming. MMAM refers to
momentum exchange between the manipulator

end of arm and one or more proof mass(es) near

the tip of a manipulator. External disturbance

force on the end effector is temporally transferred

to the proof mass(es) in order to maintain the end

point desired position. This momentum is subse­
quently absorbed by the manipulator structure

through the proper control of the main servo

system. Momentum management has also been
used in space applications to control the attitude
of a space craft (Ham and Greeley, 1987). The use

of MMAM to control the position of a robot,
machine tool, or conventional motion control

system does not seem to have been addressed

earlier.

2. Description of Experimental Setup

Figure I shows the schematic of the experimen­
tal setup and MMAM device. A flexible beam is

clamped on the slide base of x-y table. The flex­

ible beam, which has the length of 28.5 inches, the

thickness of 1/8 inches, and the width of 1.5
inches, is made of aluminum. The table is driven

by two identical DC motors, and has a chain
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¢;i(x)¢;)x)dx+ M¢;i(L)¢;)L) = Oij,

(6)

and considering the exciting force terms by the

MMAM device and the movement of slide base,
the generalized coordinate qJ t) must satisfy the

following equation of

equation of

a2
y(x, t) +El a4

y(x, t) 0 (I)
m al2 ax 4 '

with the boundary condition of

(2)

(4)

(3)'"y(x, t)="'5..:,¢;i(X)qiU),
i=l

where m=mass per unit length of beam,

M =concentrated mass on the top of

beam,

L = length of the beam.

The solution of Eq. (I) is given as

N P'Ccosp'LsinhP'L-sinp'Leoshp'L)+ I
m

+eosP'Lcoshp'L=O. (5)

By using the orthonormality condition of

where q,U) = i-th generalized coordinate,

¢;,(x)=ci{sinP'ix -sinhP'ix
- Yi(COSP'iX -eoshP'ix )},

_ sinP'iL +sinhp'L
Yi- eosp'L +coshP'L'

By the boundary conditions of Eq. (2), each P'i
has to meet the frequency equation of (Meirovit­

ch, 1986)

where /U) is the generated force by MMAM

d~:r is the acceleration of the slide base.

It is generally sufficient to approximate the end

point displacement y(L, t) by including only 2 or

3. Mathematical Modeling

The Euler-Bernoulli beam model, in which
shear deformation and rotary inertia effects are

ignored, is used for the flexible beam. Then, the

motion of a flexible beam is governed by the

mechanism to position the slide base. These DC
motors are separately located at both ends of the

chain drive as shown in Fig. I. Each DC motor
has a gear box with the reduction ratio of 65.5 : 1.

On the top of a beam, the MMAM device is

mounted (refer a detailed plot of the beam end
point in Fig. 8). The MMAM device is composed

of a coil and permanent magnet (called proof

mass). This coil is fixed on the beam so that the

generated magnetic force could be transferred to
an end point of a beam directly, and the perma­

nent magnet is attached through a flexure spring

to the beam. The DC motor of the x-y table and
the MMAM device are each driven by a current

control type linear bipolar amplifier.

An optical encoder attached on the DC motor
axis is used for the measurement of the slide base

displacement. The acceleration and position of

the end point of the flexible beam are sensed by

an accelerometer and machine vision. To measure

the relative displacement between the flexible

beam end point and the proof mass, an L VDT is

used.
The main controller, MC68020, monitors the

system status, and generates the proper control

signals to the system. The control software, which

is written as the MC68020 assembly language
makes communication with the external devices

such as a vision system, optical encoder, acceler­

ometer, L VDT, and current amplifiers through

digital I/O, A/D and D/A converters. It also has

an optimal full state observer inside. All the
arithmetic operations are performed using the
floating point coprocessor, MC68881. The host

computer, IBM-PC is used for communication
with the main controller MC68020. It downloads

the control software to, and uploads experimental
data from the main controller under the QUICK
BASIC environment through a serial communica­

tion.
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Fig. 2 Block diagram of beam dynamics
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Figure 2 is the block diagram representation of
Eqs (7) and (8).

3.1 The effect of MMAM actuator
The block diagram of Fig. 3 shows the

dynamics of a beam end point, y(L, t), and the

proof mass displacement, YU), for the input
voltage to the coil of MMAM actuator. The inner

3 terms in Eq. (3)

2(or3)

y(L, t)= L: ¢;(L)q;U).
i=l

(8)

loops represent the flexure spring force, and

damping effect, and outer loop is caused by the
back EMF of the MMAM actuawr. The system

parameters of Fig. 3 are listed on Table 1. Some

system parameters are measured directly, and

others (superscripted with * in Table I) are
determined by the system identification method

explained in the next section. The transfer func­

tion of the acceleration, .y( L, t) from the input
voltage, Vm, is given by

(9)

where

o(s) _ 3 ¢!(L)s 2
~() - '22-.2--~2 .Ps i~lS+(J)i

Figure 4 is bode plot of the transfer function of

Eq. (9). There are four peaks. The second peak is

caused by the resonance of the MMAM actuator

(i.e. by the flexure spring and proof mass). The
remaining peaks are from 3 modal frequencies of

Fig. 3 Block diagram of MMAM actuator effect
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Fig. 4 Frequency response of the end point acceleration for Vm

the beam. The point designated by 'x' is the

measured acceleration of a beam end point for the

input voltage to the MMAM actuator at each

exciting frequency. The discrepancy between the

analytic and experimental results becomes larger

for the high modal frequencies. One of the reasons

of this difference comes from the mounting mech­

anism of the system on the aluminum base plate.

Figure 4 shows the experimental data match well

with the analytical results up to the second modal
frequency.

3.2 The effect of the movement of slide base
As shown in Fig. I, the flexible beam is

clamped on the slide base. Therefore, the shear

force, FbU), and bending moment, MbU), at a
clamping point caused by a beam deflection must

be considered on the dynamics of the slide base.

The differential equation for a motor rotation is

given by

where

n
M b ( t) = ElL:, ¢7(0)qi( t),

i=1

FbU)= - EIL:,¢7'(O)qi(t),

and J is total moment of inertia on the motor

axis, N is gear reduction ratio, and TU) is the
developed torque by the motor.

By combining Eqs. (7), (10) and DC motor

characteristic, the block diagram of Fig. 5 is

constructed. The system parameters in Fig. 5 are

shown on Table 2. Again, some parameters super­

scripted with * in Table 2 are found from the
parameter identification method. The resulting

transfer function of the slide base displacement,

X, and the end point acceleration, ji(L, t), from

the input voltage of the DC motor is given by

(II )
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Fig. 5 Block diagram of slide base dynamics
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Fig. 6 Frequency response of slide base displacement for Vb
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Fig. 7 Frequency response of the end point acceleration for Vb

jj(L, n_ CZ*SPl(S)qZ(s)

Vb Pl(S)PZ(s)(js + CzBz+ Kt;{ez) + CzC3SQl(S)PZ(S) ,
(12)

where

Figure 6 is the Bode plot for Eq. (II). The solid

line in Fig. 6 represents the Bode plot of this

transfer function, and dashed line the Bode plot of
the same transfer function, when the influence of

the beam deflection forces (i.e. Fb(t) and Mb(t»

are ignored. The points 'x' are the measured
displacement of the slide base. Based on the
experimental observation, there is no response of

the slide base beyond 20 Hz of the driving signal,
even though the maximum input voltage( 10 V)
was applied to the DC motor.

The Bode plot of the transfer function of the
end point acceleration, jj(L, n, for the

base DC motor driving voltage, Vb' is shown as
solid line in Fig. 7. Again, the dotted line repre­

sents the same transfer function, when the effect of

a flexible beam deflection on the dynamics of the

slide base is ignored. The measured end point

acceleration is also shown as the mark 'x'.

Because of the dead response of the slide base for

the driving signals above 20 Hz due to the back­

lash, the second and third mode frequency could

not be measured.

4. System Parameter Identification

The modeling of a flexible beam dynamics is
completed mathematically. Some system param­

eters such as the mass of the permanent mag­

net( me), the resistance of the coil (Rl)'" can be
easily measured, but others such as a flexure
spring constant (K), force constant (Ktl ) of the

MMAM actuator... can not. By collecting the
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The numerical values of the coeftlcients in Eg.

(21) depend on the sampling time interval.

As mentioned before, the system parameters in

Eg. (20) except the mass of a permanent magnet

(me), and the resistance of a coil(R1) can not be

easily measured. But, by using the system

identification method, the coefficients in Eq. (21)

.CKtl
RIme

sz+(-lStlKel +BI)~~Ls+~CIKl .
R 1 me me

(20)

Again, the meaning of each system parameter is

given on Table I. If we use the z-transform repre­

sentation, Eq. (20) is changed to

system input-output data, and using the system

identification method such as the least square

method like an ARX, ARMAX, OE model

(Ljung, 1987), those unknown system parameters

in the MMAM actuator and slide base moving

mechanism are estimated.

Ideally, the impulse function, which has a flat

power spectrum, is the best input signal for the

system identification, because the system is excit­

ed by a wide spectrum of frequencies. But, one of

the practical optimum input signal is the so-called

pseudo-random binary sequence(PRBS) (Ljung,

1987), which is a band-limited white noise se­

quence.

4.1 Identification of the MMAM actuator
The MMAM actuator, which is schematically

described in Fig. 8, can be modelled as

hl[l+hz[z

l+alz~!+aZz-z'
(21)
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//
~~

DIA Converter,/ ~
,/P" C
,/

/
/

IBMPe/ Y Amplifier
I PRSS

/ I/
~

Fig. 8 Experimental setup for identification of MMAM
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Fig. 9 ARX model evaluation for MMAM actuator
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can be estimated. Then, by converting this esti­
mated z-transform into the laplace transform, and

matching the coefficients of this converted (i.e.
estimated) z-transform with that of Eq. (20), these

unknown system parameters can be determined.

The experimental setup is depicted in Fig. 8.

The PRBS, which has the alternating magnitude

of -l.0 V and 1.0 V excites the MMAM actuator.
The disturbed proof mass displacement is mea­

sured using LVDT, and recorded on the RAM of
MC68020 microcomputer. The sampling time of

this experiment is 2 msec. The experimental data

g 0.1
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Fig. 10 ARMAX model evaluation for MMAM actuator
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Fig. 11 OE model evaluation for MMAM actuator

Table 1 System parameters in Fig. 3

System parameter Description Value Unit

R1 Resistance of coil 4 ohm

Ke1 * Back EMF constant 0.061441 V/(in/sec)

K tl* Force constant 0.54376 Ib,/A

K(* Flexure spring constant 0.68771 Ib,/inches

B1* Damping constant 1.8082 x 1-2 Ib,/(in/sec)

me Mass of permanent magnet 0.6614 Ibm

C1 Conversion factor 386.4 (in/sec2)/g

L Length of beam 29 inches

m Mass/unit length of beam 1.8338 x 10-2 Ibm/inches

M Concentrated mass 0.4852 Ibm
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are sampled during 8 seconds. These input-output

data are uploaded to the IBM-PC for the analysis.
The MATLAB system identification software

package is used for the manipulation of these

data.
Among the uploaded experimental input­

output data, the first 1000 data points, which

amount to the data of the first 2 seconds, are

selected for building a model. The remaining data
are used in testing the accuracy of the model. A

simple model evaluation is done by running a

simulation that real input data are fed into the

model, and comparing the simulated output with
the actual, measured output. Figures 9, 10 and II

represent this result of the model evaluation for
the parametric model of ARX, ARMAX, and OE

solid line: experimental data
dashed line: model output
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15105 20
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Fig. 12 ARX model evaluation for slide base mechanism
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Table 2 System parameters in Fig. 5

System parameter Description Value Unit

Rz Resistance 8.2 ohm

Ke2 Back EMF constant 0.0388 V/(r/sec)

Kt2 Torque constant 0.50 OZrin/in/sec

r Radius of chain I.5 inches

I Area moment of inertia 2.4414x 1-' in'

E Young's modulus of AI 10.5 X 106 Ibrlin2

N Reduction ratio 76.4385 -

J* Moment of inertia 9.5206 X 10-' oZrins2

Cz Conversion factor 1.8571 x 10-2 in/rad

C3 Conversion factor 16 Ibr/ozr

- t,.,
{ mf ~ (x) dx + M ~ ILl} ~ ILl s'

S' + W,'

Fig. 15 Block diagram of simplified model

x
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where

Xk=[Yk Ykr at t=kT,
Yk=actual position,

Zk = measured position,

Uk = measured acceleration,

image processing time, and the errors in such

measurements may not be acceptable. The use of

an inertial measurement between vision samples

can be used to reduce both of these difficulties.

The use of an accelerometer attached to the beam

end point is used to supplement the vision mea­

surements to arrive at a higher bandwidth and

more accurate position estimator. In this paper,

the end point displacement of a flexible beam is

estimated by using a piezoresistive type acceler­

ometer and landmark tracking system(LTS). The

LTS is a grey-scale industrial vision system using

pinhole imaging (Lee and Dickerson, 1990). A

Kalman filter algorithm for minimizing the effects

of random errors in both sensor outputs on the

position estimate is developed.

5.1 Application of KALMAN filter to
position estimation

Consider now an one dimensional dynamic

system in Fig. 16 used to estimate the position of

an object based on the output of an accelerometer

and a vision system. If we assume l' and Tv be

the sample time intervals for the accelerometer

and vision system respectively, wh(~re there is an

integer N such that Tv=NT, then the discrete

state representation of such a dynamic system IS

described as

Visiono

for the time interval from 2 to 8 seconds. The

initial discrepancies between the experimental

data and the model output in these figures are due

to the transient responses of the each model due

to the wrong initial conditions of the model. As

shown clearly in Fig. 9, the identification result of

the ARX model is the worst among the three

modds. The OE model of Fig. II is slightly better

than the ARMAX model of Fig. 10 in reproduc­

ing rhe experimental data. Therefore, the OE

modd is chosen in identifying the coefficients in

Eq. (21). Again, these coefficients are used for the

determination of the system parameters in Eq.

(20). Those numerical values are shown on Table

I.

4.2 Identification of the slide base
mechanism

The same procedures as that of identifying the

MMAM actuator dynamics were taken for the

slide base moving mechanism. Therefore, only the

experimental data are described here. Figures 12,
13 and 14 show the results of the model output of

ARX, ARMAX, and OE with the actual response

of th,~ slide base. As shown in Fig. 12, the ARX

modd output gives the best fit to the experimental

data among the three models. Therefore, the sys­

tem parameters of the slide base mechanism were

determined based on the ARX model. The numer­

ical values of these parameters are shown on

Tabll: 2.
In conclusion, the modeling of the whole sys­

tem can be described by the block diagram of Fig.

15. To evaluate the accuracy of the model, several

experiment are made. It is shown in the Figs. 4, 6

and 7 that these experimental data match well

with the analytic results.

5. A Measurement of the End Point
Movement

Accurate, high bandwidth measurement of

position is essential to quality performance of a

feedback position control system. In many cases it

is not convenient to make such measurements

with direct contact sensors, for example, in the

case of the end point of a flexible beam. In these

situal:ions machine vision can be used. The sampl­

ing rate in machine vision is restricted by video

o Accelerometer

y

Fig. 16 One dimensional dynamic system
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y
o
•

Vision sampling

Accelerometer sampling

kNT (k+1)NT (k+2)NT
Sampling

Fig. 17 Sampling of vision and accelerometer data

During the interval [kNT, (k+ I)NT), during
which time no vision measurement made, the

estimate of state x, and error covariance P grows
according to (Gelb, 1974)

Wk=error in acceleration measurement,
Vk = error in position measurement.

It will be assumed that the error is "white

noise," which means that the subsequent analysis

considers errors caused only by random effects,

and not the effects of dynamics, or any other
systematic errors in the sensors.

This sampling procedure is described in Fig.
17. Because a vision measurement is available

only at every Tv second, the measurement equa­
tion is given as

Z(k+l)N = [I O]XCk+llN + VCk+l)N, where

where

(25)
P;V(k+lIN=a2Rw+ PYVkN +NTPVkN'

PMk+lIN=a3Rw+ PVkN'

And error covariance matrix P is updated by

P(k+lIN = {I - LCk+lINH}P(k+I)N, (28)

L(k+l)N =P(k+l)NHT{HP(k+lINHT+Rv}-l.
(27)

(26)

where

al = N 3T 4/3 - NT 4
/ 12,

az=NzT 3/2,

a3=NTz.

When a vision measurement is available, the
estimate of state, is modified by the measurement
update equation

XCk+lIN= XCk+lIN +LCk+l)N{Z(k+lIN- HX(k+lIN)'

(23)= HX(k+l)N +V(k+lIN'

After some matrix manipulations, the rela­

tionship between the initial value of F(k+lIN(at
NT, or Tv, i, e. error covariance matrix just
before the vision measurement at t=(k+ I)NT)
is given by

PY(k+lIN=a1Rw+ PYkN+2NTPYVkN +N 2T 2PUkN,

x(k+l)=Fxk+GUk'

Pk+l = FPkFT+GRwG T,

where

xk=estimate of the state at t=kT,

Rw=E{ww T},

Pk= E{(Xk - Xk)(Xk - Xk)T} = [pPYk
yvk

(24)
Rv=E{vv T},

L(k+l)N=Kalman filter gain.

The optimal estimation algorithm characterized

by Eqs. (24), (26) and (27) is coded on the main
controller in Fig. 1 for measuring the end point
movement and its velocity (Nam, 1991).

6. Experiment-Disturbance Rejection

For the experimental setup described in Fig. I,

an impulse force is applied on the beam end
point. The impulse force is generated by striking

a steel ball on the beam end point. To minimize

the effect of an impulse force on the end point
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displac1ement, the optimal linear output feedba£k

is used. For the reconstruction of the state vector

from the measured variables, a full state observer
is applted.

By the simulation of the impulse force excita­
tion or the flexible beam being designed, the

contribution of the third mode to the end point

displacement is only 0.14459% compared to that

of the first. Therefore, the higher mode contribu­
tions except the first two modes can be neglected.

As discussed in the section of mathematical

modeling, there are two control inputs for the end
point control. One is by the movement of the slide

basel V~) which is effective in a low frequency

region, and the other is by the MMAM act­
uator( Vm ) which has the high bandwidth control

capability. By combining acceleration, and ma­

chine vision measurement of the flexible beam
end point with the KALMAN FILTER algorith­

m devdoped in the previous section, we can

recover the displacement(y) and velocity (y) of

the beam end point with the accuracy and high

bandWidth. The relative displacement( Y-y) of

the proof mass to the beam end point is measured
using an LVDT installed between the flexible

beam and the proof mass. The movement(X) of
the slide base can be estimated from the optical

encoder attached to the driving DC motor. There­

fore, there are four outputs. The discrete-time

state space representation of the flexible beam

dynamics shown in Fig. 15 by retaining the first
two modes is given by the following

~o(k+ 1)=Ao~o(k)+Bo!i(k),

~(k)=C~o(k), (29)

where

~o(k)=[XOl(k)."X08(k)y,
,1i.(k)=[y(k) y (k) Y(k) - y(k)X(k)y,

!i(k)=[ Vm(k) Vb(k)y,

Ao=system matrix (8 X 8),
Bo=input matrix (8x2),
C =output matrix (4 x 8).

The feedback control law of 11:.(k) = - K~o(k)

for the: dynamic system of Eq. (29) is determined
by minimizing the following quadratic perfor­

mance index of

,~

PI = ~{xo(k)TQoxo(k)+ u(k)TRu(k)}.
i=O - - ~ -

(30)

The steady state feedback gain K is given as

K=(R+B;;SBo)-lBoTSAo' (31)

where S is the solution of the following discrete­

time version matrix RICCATI equation of

0=5- Ah5Ao+ Ah5Bo(R+ Bh}- l Bo5 TA o-Qo'
(32)

The performance of the optimal linear state

feedback system depends on the choice of weight­

ing matrix Qo for the state variables and R for the
inputs. However, there is no systematic way to

select these matrices, except for iteratively chang­
ing the values of the matrices with some intuitions

of a designer to reach at a satisfactory result.

After a lot of simulations, the following perfor­

mance index was chosen.

= ~ {qly(k)2+ q2[ Y<k) - y(k)F+ q3Y (k)2
k=O -

+n Vm(k)2+ r2 Vb(k)2}. (33)

In Eq. (33), y(k), y(k), Y(k), Vb(k), and Vm(k)

represents the displacement of the beam end

point, its velocity, displacement of the proof mass,

and control inputs for the base DC motor and
MMAM actuator respectively.

6.1 Experiment using base motor only
Figure 18(a) through Fig. 18(c) display the

responses or the beam end point displacement,

velocity, and slide base movement for the value of

Ql=l, Q2=0, Q3=1, and R=10-3 in the perfor­
mance index of Eq. (33). Because of the non­
linearities in the base slide mechanism such as a

stiction and dead zone, the beam end point does

not return to the position it had before the impact.
The effect of the nonlinearities on the slide base

response can be noticed well in Fig. 18(c). The
flat response in Fig. 18(c) between I second and

2 second is considered as the result of the stiction
in the slide base mechanism, and the dead respon­
se after 3 second of the dead zone. The mark 'x'

in Fig. 18(a) represents a vision data from the
machine vision. The sudden rise and drop in the

position and velocity estimation signals were the
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Fig. 18 (a) End point displacement (ql=q3=1, q2=O, & R=I.Oe-3)
(b) End point velocity (ql=q3=1, Q2=O, & R=I.Oe-3)
(c)Slide base displacement (ql=q3=1, Q2=O, & R=1.0e-3)

results from a correction by the Kalman filter.

In order to eliminate the steady state error in

Fig. 18(a), integral control is added. By augment­

ing the state XOg 1) in Eg. (29), which is the integral

of y (beam end point), and defined as

i og= qh(L)xOl + rpZ(L)x03 + Xo7, (34)

and with the additional term of q.(XOg)l) to the PI
of Eg. (33), integral control can be achieved.

Figure 19(a) through Fig. 19(c) represent the

result of the integral control for the values of ql=

1) Actually X o7, because of suppressed 2nd order proof mass dynamics.. (Proof mass is clamped on the beam
end point during this experiment)

xo7= cPl (L) XOI + cP2 (L) X o3+X 05
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I, q2='0, Q3=1, Q4=0.1, and R=IO- 5
• As can be

seen in Fig. 19(a), the steady state error of the

beam end point is decreased significantly compar­
ed to those of Fig. 18(a). The peak values of the

end point displacement and velocity are also

lowered due to increased control effort of R =
10-5

In conclusion, the nonlinearities of the slide

base have a degrading effect on the disturbance

rejection of the beam end point. The steady state
error caused by these nonlinearities is reduced by

using integral control.
6.2 Experiment using MMAM and base

motor
Both actuators, MMAM and base motor, are

used in regulating the end point displacement for
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Fig. 19 End point displacement (ql=q3=1, q2=O, q4,=O.I, & R=I.Oe-5)
(b) End point velocity (q,=q3=1, q2=O, q,=O.I, & R=I.Oe-5)
(c) Slide base displacement (q,=q3=1, q2'=O, q,=O.I, & R=I.Oe-5)
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Fig. 20 End point displacement (q, = qz = q3 = I, q. = 0.1, r, =30, & r,=O.OI)
(b) End point velocity (q, =qZ=q3= I, q.=O.I, r, =30, & r2 =0.OI)
(c) Relative displacement of proof mass (q, = q2= q3= I, q.=O.I, r, =30, & r2 =0.0I)
(d) Slide base displacement (q,=q2=q3=1, q.=O.I, r, =30, & rz=0.01)
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the same impulse force used in the previous sec­
tion. The integral control is also applied with the

value:s of ql = q2= q3= I, and q4=0.1 in all the
experiments listed in this section. Figure 20(a)

through Fig. 20(d) show the flexible beam end

point displacement, velocity, relative displace­
ment between the beam end point and proofmass,

and slide base displacement for n = 30 and r2= 10-2.

The larger penalty is given to using the MMAM
actuator than the slide base DC motor, in order to

prev(:nt the proof mass from going away beyond
its working range(i.e. ±0.18 inches). Figure 20(a)

displays that the end point displacement seems to

be well controlled up to I second as expected, but
after that it is going away again further from the

initial point in spite of the closed loop control

action. The reason of this unexpected response is

cons] dered as the result of using the term of q2( y­
y)2 in the performance index of Eq. (33). The

inclusion of this term in the cost function means

the :;ystem is controlled not to allow a large

excursion of the proof mass from its neutral
position. As shown in Fig. 20(c), the proof mass

starts returning to the neutral position after I

second. This movement of the proof mass results
in the opposite force on the beam end point to

what should be necessary to regulate the end

point displacement to the initial point. But, the

proof mass would be out of the working ranges
without using the term of q2( Y -y)2 in the perfor­

mance index.
As discussed in the above, the small working

rang,e of the proof mass is the main obstacle to the

high performance control in the disturbance rejec­
tion. For the current experimental setup, the

performance of disturbance rejection in using

both actuators is about 2.5 times better than that
of using base motor only (see Figs. 19(a) and

20(a).

7. Conclusion

The concept of MMAM was applied to the end
point control of a flexible manipulator. A linear
mathematical model is developed for the flexible
beam controlled by MMAM actuator and slide

base DC motor. A system identification method is

applied to estimate some system parameters which
can not be measured. To evaluate the accuracy of

a model, the frequency response of the beam
dynamics has been determined experimentally,

and compared with the analytic result. The mag­
nitude of the end point acceleration which can be

generated using the MMAM actuator is 10 times

larger than that being attained using the move­
ment of the slide base. For an accurate, high

bandwidth estimation of the position and velocity
of the beam end point, the optimal estimator

using combined vision and acceleration measure­

ments has been designed.
For the impulse disturbance at the beam end

point, the end point movement is regulated using

the optimal linear state feedback control. Integral

control is added to decrease the steady state error
caused by the nonlinearities of the slide base

mechanism such as stiction and dead zone (back­
lash). The limited working ranges of the proof

mass is the main obstacle to the high performance

control in the disturbance rejection. For the cur­

rent experimental setup, the performance of dis­

turbance rejection in using MMAM actuator is

about 2.5 times better than that of using base

motor only.
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